资源类型

期刊论文 269

会议视频 8

年份

2023 14

2022 25

2021 22

2020 10

2019 17

2018 10

2017 7

2016 14

2015 10

2014 13

2013 10

2012 16

2011 23

2010 23

2009 10

2008 13

2007 7

2006 4

2005 5

2004 3

展开 ︾

关键词

可持续发展 4

中国 3

勘探开发 3

能源 3

采油工程 3

中国近海 2

发展 2

发展战略 2

哲学 2

大中型油气田 2

大庆油田 2

天然气 2

建议 2

微地震监测 2

技术 2

油气资源 2

生物油 2

生物质 2

石油 2

展开 ︾

检索范围:

排序: 展示方式:

Numerical simulation of bituminous coal combustion in a full-scale tiny-oil ignition burner: influence

Zhengqi LI, Chunlong LIU, Xiang ZHANG, Lingyan ZENG, Zhichao CHEN

《能源前沿(英文)》 2012年 第6卷 第3期   页码 296-303 doi: 10.1007/s11708-012-0191-0

摘要: The progression of ignition was numerically simulated with the aim of realizing a full-scale tiny-oil ignition burner that is identical to the burner used in an 800 MWe utility boiler. The numerical simulations were conducted for four excess air ratios, 0.56, 0.75, 0.98 and 1.14 (corresponding to primary air velocities of 17, 23, 30 and 35 m/s, respectively), which were chosen because they had been used previously in practical experiments. The numerical simulations agreed well with the experimental results, which demonstrate the suitability of the model used in the calculations. The gas temperatures were high along the center line of the burner for the four excess air ratios. The flame spread to the burner wall and the high-temperature region was enlarged in the radial direction along the primary air flow direction. The O concentrations for the four excess air ratios were 0.5%, 1.1%, 0.9% and 3.0% at the exit of the second combustion chamber. The CO peak concentration was very high with values of 7.9%, 9.9%, 11.3% and 10.6% for the four excess air ratios at the exit of the second combustion chamber.

关键词: numerical simulation     tiny-oil ignition burner     pulverized coal     temperature field    

Numerical simulation of combustion characteristics at different coal concentrations in bituminous coal ignitionin a tiny-oil ignition burner

Chunlong LIU, Qunyi ZHU, Zhengqi LI, Qiudong ZONG, Yiquan XIE, Lingyan ZENG

《能源前沿(英文)》 2013年 第7卷 第2期   页码 255-262 doi: 10.1007/s11708-013-0255-9

摘要: With the objective of producing a full-scale tiny-oil ignition burner, identical to the burner used in an 800 MWe utility boiler, numerical simulations were performed using Fluent 6.3.26 to study the progress of ignition for four coal concentration settings covering sub-operation conditions prevailing during the experiments performed with the burner. The numerical simulations conformed to the experimental results, demonstrating the suitability of the model used in the calculations. Simulations for a coal concentration of 0.40 kg/kg corresponding to a single burner operating at its rated output were also conducted, which indicated that gas temperatures along the burner centerline were high. As gas flowed to the burner nozzle, the high-temperature region expanded, ensuring a successful pulverized-coal ignition. With increasing coal concentration (0.08–0.40 kg/kg), the gas temperature along the burner centerline and at the first and second combustion chamber exits decreased at the equivalent radial points. At the center of the second combustion chamber exit, the O concentrations were almost depleted for the five coal concentrations, while the CO concentrations peaked.

关键词: numerical simulation     tiny-oil ignition burner     pulverized coal     temperature field    

Influence of different oil feed rate on bituminous coal ignition in a full-scale tiny-oil ignition burner

Chunlong LIU, Qunyi ZHU, Zhengqi LI, Qiudong ZONG, Xiang ZHANG, Zhichao CHEN

《能源前沿(英文)》 2013年 第7卷 第3期   页码 406-412 doi: 10.1007/s11708-013-0266-6

摘要: To reduce oil consumption during firing-up and partial-load operation, a tiny-oil ignition burner has been recommended. Through reacting-flow experiments performed on a full-scale experimental setup, the influence of different oil flow rates on bituminous coal combustion as well as flow rates without coal feed was analyzed. The ignition burner is identical to that normally used in an 800 MWe utility boiler. Under operating conditions with flow rates of 50, 100, and 150 kg/h, gas temperature distributions were measured in the burner. At the equivalent measuring points at the exits of the first and second combustion chambers, these distributions remained almost unchanged under a constant coal feed rate of 4 t/h. However on the burner centerline, distributions increased slightly with increasing flow rate. Different gas concentrations were measured at the center of the burner exit. For instance, the O concentration at the burner exit varied from 0.01% to 0.31% whereas CO concentrations were more than 10000 ppm. At the same coal feed rate of 4 t/h, burner resistances are 480, 600, and 740 Pa for oil flow rates of 50, 100, and 150 kg/h, respectively.

关键词: ignition     coal     burner     boiler     oil flow rate    

Influence of nozzle height to width ratio on ignition and NO

Liutao SUN, Yonghong YAN, Rui SUN, Zhengkang PENG, Chunli XING, Jiangquan WU

《能源前沿(英文)》 2021年 第15卷 第2期   页码 431-448 doi: 10.1007/s11708-021-0726-3

摘要: To improve the ignition behavior and to reduce the high NO emissions of blended pulverized fuels (PF) of semicoke (SC), large-scale experiments were conducted in a 300 kW fired furnace at various nozzle settings, i.e., ratios (denoted by / ) of the height of the rectangular burner nozzle to its width of 1.65, 2.32, and 3.22. The combustion tests indicate that the flame stability, ignition performance, and fuel burnout ratio were significantly improved at a nozzle setting of / = 2.32. The smaller / delayed ignition and caused the flame to concentrate excessively on the axis of the furnace, while the larger / easily caused the deflection of the pulverized coal flame, and a high-temperature flame zone emerged close to the furnace wall. NO emissions at the outlet of the primary zone decreased from 447 to 354 mg/m (O = 6%), and the ignition distance decreased from 420 to 246 mm when the / varied from 1.65 to 3.22. Furthermore, the ratio (denoted by / ) of the strong reduction zone area to the combustion reaction zone area was defined experimentally by the CO concentration to evaluate the reduction zone. The / rose monotonously, but its restraining effects on NO formation decreased as / increased. The results suggested that in a test furnace, regulating the nozzle / conditions sharply reduces NO emissions and improves the combustion efficiency of SC blends possessing an appropriate jet rigidity.

关键词: rectangular jet burner     nozzle height to width ratio     ignition characteristics     pyrolyzed semicoke (SC) and bituminous blend     NOx formation    

performance, emission and combustion characteristics fueled with diesel-like fuel produced from waste engine oil

V. Edwin Geo, Ankit Sonthalia, Fethi Aloui, Femilda Josephin J. S.

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1063-6

摘要:

To derive liquid fuel from waste engine oil and plastics thorough pyrolysis process

To make equal blend of waste engine oil and plastics with diesel fuel

To find the suitability of fuel from waste in diesel engine through performance, emission and combustion characteristics

关键词: Waste engine oil     Waste plastic oil     Diesel fuel     Pyrolysis     Compression ignition engine    

An experimental study on ignition of single coal particles at low oxygen concentrations

Wantao YANG, Yang ZHANG, Lilin HU, Junfu LYU, Hai ZHANG

《能源前沿(英文)》 2021年 第15卷 第1期   页码 38-45 doi: 10.1007/s11708-020-0692-1

摘要: An experimental study on the ignition of single coal particles at low oxygen concentrations ( <21%) was conducted using a tube furnace. The surface temperature ( ) and the center temperature ( ) of the coal particles were obtained from the images taken by an infrared camera and thermocouples respectively. The ignition processes were recorded by a high-speed camera at different values and furnace temperatures . Compared with literature experimental data obtained at a high value, the ignition delay time decreases more rapidly as increases at the low region. The responses of and to the variation of are different: decreases while remains nearly constant with increasing at a low value. In addition, is less sensitive to while the ignition temperature is more sensitive to at a low value than in air. Observations of the position of flame front evolution illustrate that the ignition of a coal particle may change from a homogeneous mode to a heterogeneous or combined ignition mode as decreases. At a low value, buoyancy plays a more significant role in sweeping away the released volatiles during the ignition process.

关键词: coal particles     low oxygen concentration     ignition     ignition temperature     ignition modes    

Numerical study of ignition mechanism of n-heptane direct injection compression-ignition engine

Xiaoping GUO, Zhanjie WANG,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 432-439 doi: 10.1007/s11708-009-0050-9

摘要: A detailed chemical dynamical mechanism of oxidation of n-heptane was implemented into kiva-3 code to study the ignition mechanism of a high-temperature, high-pressure, three-dimensional-space, transient turbulent, non-homogeneous, mono-component fuel in the engine. By testing the quantity of the heat released by the chemical reaction within the cylinder cell, the elementary reaction showing an obvious increase in the cell temperature was defined as ignition reaction and the corresponding cell as ignition position. The main pathway of the ignition reaction was studied by using the reverse deducing method. The result shows that the ignition in the engine can be divided into low-temperature ignition and high-temperature ignition, both of which follow the same rule in releasing heat, called the impulse heat releasing feature. Low-temperature ignition reaction, whose ignition reaction is c5h9o1-4=ch3cho+c3h5-a, follows the oxidation mechanism, while high-temperature ignition reaction, whose ignition reaction is c2h3o1-2=ch3co, follows the decomposition mechanism. No matter which ignition it is in, the chemical reaction that restrains the ignition reaction from lasting is the deoxidization reaction of alkylperoxy radicals.

关键词: compression-ignition engine     ignition mechanism     elementary reaction     n-heptane    

Influence of mass air flow ratio on gas-particle flow characteristics of a swirl burner in a 29 MW pulverized

Rong YAN, Zhichao CHEN, Shuo GUAN, Zhengqi LI

《能源前沿(英文)》 2021年 第15卷 第1期   页码 68-77 doi: 10.1007/s11708-020-0697-9

摘要: In a gas/particle two-phase test facility, a three-component particle-dynamics anemometer was used to measure the characteristics of gas/particle two-phase flows in a 29 megawatt (MW) pulverized coal industrial boiler equipped with a new type of swirling pulverized coal burner. The distributions of three-dimensional gas/particle velocity, particle volume flux, and particle size distribution were measured under different working conditions. The mean axial velocity and the particle volume flux in the central region of the burner outlet were found to be negative. This indicated that a central recirculation zone was formed in the center of the burner. In the central recirculation zone, the absolute value of the mean axial velocity and the particle volume flux increased when the external secondary air volume increased. The size of the central reflux zone remained stable when the air volume ratio changed. Along the direction of the jet, the peak value formed by the tertiary air gradually moved toward the center of the burner. This tertiary air was mixed with the peak value formed by the air in the adiabatic combustion chamber after the cross-section of / = 0.7. Large particles were concentrated near the wall area, and the particle size in the recirculation zone was small.

关键词: industrial pulverized coal boiler     swirl burner     air/particle flow     particle dynamic analyzer (PDA)    

柴油在热壁面上的着火

栗元龙,陆守香,范维澄

《中国工程科学》 2004年 第6卷 第11期   页码 63-65

摘要:

研究了柴油机燃料泄漏后在热壁上的着火,利用统计方法得到着火的临界温度。发现样品燃料的热壁着火温度与自燃点的差值比其它燃料热壁着火的相应值要小得多,而且着火方式也有很大差异。详细解释了泄漏后的液体在热表面上的沸腾蒸发模式,给出了燃料蒸气的质量流率推导公式。

关键词: 热壁面     着火实验     沸腾    

Effect of distributions of fuel concentration and temperature on ignition processes in a diesel PCCI

Yang YU, Wanhua SU,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 269-279 doi: 10.1007/s11708-009-0046-5

摘要: The distributions of fuel concentration and temperature have significant effect on the ignition processes of diesel premixed charge compression ignition (PCCI) combustion. It was found in this study that the ignition process of PCCI combustion organized by multi-pulse injection was strongly influenced by conditions of fuel stratification. The start of low temperature reactions occurred in the leaner area of the combustion chamber in the test engine because the temperature here first reached the point of low temperature reactions. Ignition always occurred in the position where the mixture featured with equivalence ratios close to the mean equivalence ratio of the overall mixture, while the neighboring area of the initial ignition area accumulate heat with a finite speed until finally autoigniting. Moreover, the appearance of highest combustion temperature occurred in the same area at the combustion chamber. For more homogeneous mixture, a higher amount of mixture reached ignition simultaneously, resulting in a larger initial ignition area and a higher temperature at the ignition area. Furthermore, V-type distribution of equivalence ratio was found to be beneficial to retarding high temperature reaction.

关键词: PCCI     fuel stratification     multi-pulse injection     ignition    

Study on electrical ignition and micro-explosion properties of HAN-based monopropellant droplet

Yonggang YU, Ming LI, Yanhuang ZHOU, Xin LU, Yuzhu PAN,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 430-435 doi: 10.1007/s11708-010-0010-4

摘要: In order to study the electrical ignition characteristics of hydroxylammonium nitrate (HAN)-based liquid propellant, an experimental device for the electrical heating ignition of a liquid propellant droplet was designed. By using a high speed camera system, the ignition properties of the LP1846 single droplet were observed at different electrical heating speeds. The results show that when the LP1846 droplet is electrified, it mainly goes through an evaporization process, a periodic expansion and contraction process, a stronger thermal decomposition process, and an ignition and combustion process. The periodic expansion and contraction process accompanies the droplet micro-explosion phenomenon, and the micro-explosion mechanism is formed mainly due to the overheated water component in LP1846. When peak load voltage is from 80 to 140V/s, the ignition delay of the LP1846 droplet is linearly shortened from 0.82 to 0.62s, but the flame is lighter. Based on the above experiments, a simplified model of the electrical heating ignition of the LP1846 single droplet is established.

关键词: liquid propellant     electrical ignition     ignition delay time     transient measurement    

New experimental technique to determine coal self-ignition duration

ZHANG Xinhai, XI Guang, ZHANG Xinhai

《能源前沿(英文)》 2008年 第2卷 第4期   页码 479-483 doi: 10.1007/s11708-008-0058-6

摘要: An artificial neural network (ANN) model was adopted to simulate the relationship between self-ignition duration and sulfur content, ash content, oxygen consumption rate, carbon monoxide as well as carbon dioxide generation rate of coal at different temperatures of self heating process. The data from spontaneous combustion experiments were used for ANN training to obtain the connection strength between nerve cells. An oil-bath programmed temperature experiment device was designed and the experimental condition and the size of the test tube were determined for testing the oxygen consumption and the gases generation rate of coal during self-heating process. The sulfur content, the ash content and the data from the oil-bath experiment were taken as ANN inputs to calculate the experiment self-ignition duration of coal. Compared with spontaneous combustion experiment, less than 1% of coal sample and 10% of time are required with an error of less than 3 days to test self-ignition duration of coal.

Development and demonstration plant operation of an opposed multi-burner coal-water slurry gasification

WANG Fuchen, ZHOU Zhijie, DAI Zhenhua, GONG Xin, YU Guangsuo, LIU Haifeng, WANG Yifei, YU Zunhong

《能源前沿(英文)》 2007年 第1卷 第3期   页码 251-258 doi: 10.1007/s11708-007-0035-5

摘要: The features of the opposed multi-burner (OMB) gasification technology, the method and process of the research, and the operation results of a pilot plant and demonstration plants have been introduced. The operation results of the demonstration plants show that when Beisu coal was used as feedstock, the OMB CWS gasification process at Yankuang Cathy Coal Co. Ltd had a higher carbon conversion of 3%, a lower specific oxygen consumption of about 8%, and a lower specific carbon consumption of 2%–3% than that of Texaco CWS gasification at the Lunan Fertilizer Plant. When Shenfu coal was used as feedstock, the OMB CWS gasification process at Hua-lu Heng-sheng Chemical Co. Ltd had a higher carbon conversion of more than 3%, a lower specific oxygen consumption of about 2%, and a lower specific coal consumption of about 8% than that of the Texaco CWS gasification process at Shanghai Coking & Chemical Corporation. The OMB CWS gasification technology is proven by industrial experience to have a high product yield, low oxygen and coal consumption and robust and safe operation.

An experimental study on spray auto-ignition of RP-3 jet fuel and its surrogates

Yaozong DUAN, Wang LIU, Zhen HUANG, Dong HAN

《能源前沿(英文)》 2021年 第15卷 第2期   页码 396-404 doi: 10.1007/s11708-020-0715-y

摘要: Jet fuel is widely used in air transportation, and sometimes for special vehicles in ground transportation. In the latter case, fuel spray auto-ignition behavior is an important index for engine operation reliability. Surrogate fuel is usually used for fundamental combustion study due to the complex composition of practical fuels. As for jet fuels, two-component or three-component surrogate is usually selected to emulate practical fuels. The spray auto-ignition characteristics of RP-3 jet fuel and its three surrogates, the 70% mol -decane/30% mol 1,2,4-trimethylbenzene blend (Surrogate 1), the 51% mol -decane/49% mol 1, 2, 4-trimethylbenzene blend (Surrogate 2), and the 49.8% mol -dodecane/21.6% mol -cetane/28.6% mol toluene blend (Surrogate 3) were studied in a heated constant volume combustion chamber. Surrogate 1 and Surrogate 2 possess the same components, but their blending percentages are different, as the two surrogates were designed to capture the H/C ratio (Surrogate 1) and DCN (Surrogate 2) of RP-3 jet fuel, respectively. Surrogate 3 could emulate more physiochemical properties of RP-3 jet fuel, including molecular weight, H/C ratio and DCN. Experimental results indicate that Surrogate 1 overestimates the auto-ignition propensity of RP-3 jet fuel, whereas Surrogates 2 and 3 show quite similar auto-ignition propensity with RP-3 jet fuel. Therefore, to capture the spray auto-ignition behaviors, DCN is the most important parameter to match when designing the surrogate formulation. However, as the ambient temperature changes, the surrogates matching DCN may still show some differences from the RP-3 jet fuel, e.g., the first-stage heat release influenced by low-temperature chemistry.

关键词: RP-3 jet fuel     surrogate     spray auto-ignition     constant volume combustion chamber    

Effect of 2,5-dimethylfuran addition on ignition delay times of n-heptane at high temperatures

Zhenhua GAO, Erjiang HU, Zhaohua XU, Geyuan YIN, Zuohua HUANG

《能源前沿(英文)》 2019年 第13卷 第3期   页码 464-473 doi: 10.1007/s11708-019-0609-z

摘要: The shock tube autoignition of 2,5-dimethylfuran (DMF)/n-heptane blends (DMF0-100%, by mole fraction) with equivalence ratios of 0.5, 1.0, and 2.0 over the temperature range of 1200–1800 K and pressures of 2.0 atm and 10.0 atm were investigated. A detailed blend chemical kinetic model resulting from the merging of validated kinetic models for the components of the fuel blends was developed. The experimental observations indicate that the ignition delay times nonlinearly increase with an increase in the DMF addition level. Chemical kinetic analysis including radical pool analysis and flux analysis were conducted to explain the DMF addition effects. The kinetic analysis shows that at lower DMF blending levels, the two fuels have negligible impacts on the consumption pathways of each other. As the DMF addition increases to relatively higher levels, the consumption path of n-heptane is significantly changed due to the competition of small radicals, which primarily leads to the nonlinear increase in the ignition delay times of DMF/n-heptane blends.

关键词: ignition delay time     shock tube     kinetic model     2     5-dimethylfuran (DMF)     n-heptane    

标题 作者 时间 类型 操作

Numerical simulation of bituminous coal combustion in a full-scale tiny-oil ignition burner: influence

Zhengqi LI, Chunlong LIU, Xiang ZHANG, Lingyan ZENG, Zhichao CHEN

期刊论文

Numerical simulation of combustion characteristics at different coal concentrations in bituminous coal ignitionin a tiny-oil ignition burner

Chunlong LIU, Qunyi ZHU, Zhengqi LI, Qiudong ZONG, Yiquan XIE, Lingyan ZENG

期刊论文

Influence of different oil feed rate on bituminous coal ignition in a full-scale tiny-oil ignition burner

Chunlong LIU, Qunyi ZHU, Zhengqi LI, Qiudong ZONG, Xiang ZHANG, Zhichao CHEN

期刊论文

Influence of nozzle height to width ratio on ignition and NO

Liutao SUN, Yonghong YAN, Rui SUN, Zhengkang PENG, Chunli XING, Jiangquan WU

期刊论文

performance, emission and combustion characteristics fueled with diesel-like fuel produced from waste engine oil

V. Edwin Geo, Ankit Sonthalia, Fethi Aloui, Femilda Josephin J. S.

期刊论文

An experimental study on ignition of single coal particles at low oxygen concentrations

Wantao YANG, Yang ZHANG, Lilin HU, Junfu LYU, Hai ZHANG

期刊论文

Numerical study of ignition mechanism of n-heptane direct injection compression-ignition engine

Xiaoping GUO, Zhanjie WANG,

期刊论文

Influence of mass air flow ratio on gas-particle flow characteristics of a swirl burner in a 29 MW pulverized

Rong YAN, Zhichao CHEN, Shuo GUAN, Zhengqi LI

期刊论文

柴油在热壁面上的着火

栗元龙,陆守香,范维澄

期刊论文

Effect of distributions of fuel concentration and temperature on ignition processes in a diesel PCCI

Yang YU, Wanhua SU,

期刊论文

Study on electrical ignition and micro-explosion properties of HAN-based monopropellant droplet

Yonggang YU, Ming LI, Yanhuang ZHOU, Xin LU, Yuzhu PAN,

期刊论文

New experimental technique to determine coal self-ignition duration

ZHANG Xinhai, XI Guang, ZHANG Xinhai

期刊论文

Development and demonstration plant operation of an opposed multi-burner coal-water slurry gasification

WANG Fuchen, ZHOU Zhijie, DAI Zhenhua, GONG Xin, YU Guangsuo, LIU Haifeng, WANG Yifei, YU Zunhong

期刊论文

An experimental study on spray auto-ignition of RP-3 jet fuel and its surrogates

Yaozong DUAN, Wang LIU, Zhen HUANG, Dong HAN

期刊论文

Effect of 2,5-dimethylfuran addition on ignition delay times of n-heptane at high temperatures

Zhenhua GAO, Erjiang HU, Zhaohua XU, Geyuan YIN, Zuohua HUANG

期刊论文